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Abstract 
 

Grid applications typically deal with huge amount of 

data and often the same data have to be transferred and 

processed on many resources. Nevertheless, the majority 

of existing middleware platforms for Grid computing do 

not provide suitable programming and communication 

models to make easy software development and to 

improve communication performances when a large set of 

receivers is involved. Some middlewares for wide area 

network computing, such as ProActive, provide the group 

abstraction to transparently deal with a number of similar 

receivers. We propose an extension of such a mechanism 

in order to improve its features for Grid environments. In 

particular, ProActive native groups have been extended 

both at programming and communication levels in order 

to support both different internal behaviors and high 

performance communication based on IP multicast. A 

case study shows the effectiveness of the new mechanism 

and its efficiency compared with the original one. 

 

 

1. Introduction 

 
 Many Grid applications (such as simulations applied to 

scientific and engineering fields, or data acquisition and 

analysis from distributed measurement instrumentations 

and sensors) deal with intensive computations and 

management of huge amount of data and often the same 

data have to be transferred and processed on multiple 

resources in order to improve the performance. 

 In recent years, many Grid middleware platforms and 

toolkits have been developed (Globus [1], Legionz [2], 

Unicore [3], Condor-G [4], HiMM [5], etc.). These 

middleware platforms, typically, adopt unicast 

communication mechanisms implemented atop unicast 

reliable protocols. However, Grid systems could strongly 

benefit in many applications of a one-to-many or many-

to-many communication mechanisms [6] [7].  

 Providing a middleware for Grid computing with an 

effective and efficient implementation of the group 

abstraction at programming level could ease software 

development and reduce the communication overhead 

both in a small scale and in a large scale. 

 According to the Object Group design pattern [8], a 

group is a local surrogate for a group of objects 

distributed across networked machines to which can be 

assigned the execution of a task. The object group pattern 

specifies that when a method is invoked on a group, the 

runtime system sends the method invocation request to 

the group members, waits for one or more member-

replies on the basis of a policy, and returns the result back 

to the client. Groups are usually dynamic, i.e. the set of 

group members can continuously change.  

 At programming level, groups can ease software 

development since they simplify the implementation of 

some high-level computing models, such as master-slave, 

master-worker, pipeline and work-stealing. 

 At communication level, groups can reduce the 

communication overhead for several reasons. First, the 

delivery of the same content to a collection of receivers 

can benefit of the group abstraction since specific 

optimizations can be applied even if the underlying 

transport layer is based on unicast communication [9]. 

For instance, the network transfer of objects requires 

serialization before sending them. Since serialization 

takes a significant processing time, sending the same 

object to the members of the group is easily improved if 

the same serialized copy of the object is used for a unicast 

transfer towards each member. Second, group 

communication can be implemented (only for some 

internal behaviors) through its mapping on a multicast 

transport layer. In this case, differently from real-time 

multimedia distributed systems, which tolerate unreliable 

data streaming to reduce latency, Grid systems often 

require reliable multicast protocols to deliver replicated 

application data without losses and errors.  

 These considerations have motivated an intense 

research activity which has led to many protocol 

definitions for implementing reliability in multicast 

communication. The paper in [10] proposes an interesting 



solution integrated in a Java framework, JRMS (Java 

Reliable Multicast Service) [11], that provides several 

reliable multicast protocols.  

 In this paper, an extension of the groups provided by 

ProActive [12] is proposed. The ProActive API was 

modified in order to (1) support the definition of specific 

semantics for groups; (2) dynamically install defined 

semantics in running groups; (3) establish a mapping with 

a transport layer; (4) select IP multicasting when the 

group semantics require members to be clones and 

methods arguments to be delivered to all replicas. The 

paper presents also the integration of a transport layer 

based on IP multicast with ProActive and discusses, 

through the implementation of a case study, the benefits 

that the above extensions introduce in some computing 

models. 

 The rest of the paper is organized as follows. Section 2 

describes the typed groups provided by ProActive and the 

current limitations as concerns the internal behavior and 

communication layer. Section 3 introduces some possible 

semantics for groups. Section 4 proposes a new ProActive 

API and the integration of a specific transport layer based 

on IP multicast. Section 5 discusses a case study, which is 

an application based on the master/slave computing 

model implemented through ProActive groups. 

 

2. ProActive Groups 
 

 The basic unit of activity and distribution used by 

ProActive to build concurrent applications is the Active 

Object. An active object is remotely created on a host 

involved in the computation. Methods calls sent to active 

objects are always asynchronous with transparent future 

objects and the synchronization is handled by a 

mechanism known as wait-by-necessity [13]. 

 In addition to simple active objects, ProActive offers a 

group communication mechanism that allows for method 

invocations on sets of active objects, grouped together 

and referenced by a single collective name. A ProActive 

group is also called typed group since it is composed of 

objects belonging to classes inheriting from the same 

superclass or implementing the same interface. Typed 

group is the "clonation" of an active object on a set of 

nodes and a group communication is the "replication" of a 

remote method invocation on them. Each member can be 

an instance of a different class but all the members must 

have the same ancestor.  

 While many libraries and programming frameworks 

delivering group abstraction impose specific constraints 

on programmers, thanks to the use of a Meta-Object 

Protocol (MOP) [14], ProActive delivers a more 

transparent and flexible mechanism. ProActive MOP, 

through the reification of method invocation and 

constructor call, makes it possible to initiate group 

communication invoking a method of the group object. 

As a consequence a typed group takes exactly the same 

form as using only one active object. When a method call 

is invoked towards a group, the semantics of 

communications are implemented on an asynchronous 

underlying communication system which internally 

handles execution requests as sequences of events related 

to request transmissions, request dispatching, failure 

notifications, result collecting, etc. Such communication 

system asynchronously and efficiently propagates the call 

to all members of the group using multithreading. A 

method call on a group is asynchronous and provides a 

transparent future object to collect the results. 

 Currently, ProActive groups provide the programmer 

with some mechanisms for the management of input 

parameters, such as broadcasting and scattering. By 

adopting the broadcasting, the same parameter is sent to 

all the members. On the other hand, by adopting the 

scattering, a part of the overall parameter is transferred to 

the members. In this case, the parameter has to be 

explicitly passed as a group, which is built splitting the 

original parameter in several parts. The default behavior 

is the broadcasting, while in order to scatter a parameter 

the programmer has to invoke the static method 

setScatterGroup of the ProActiveGroup class to the 
input parameter group. So, the scatter policy is tied only 

to a specific input parameter instance. 

 Some synchronization policies can also be adopted to 

block the caller when a return parameter is used. The 

limitation of this approach is that synchronization policies 

can be associated to the returned group but not to the 

group instance which invokes the method. The result of a 

typed group communication is also a group, requiring so 

an explicit management of its group members when an 

aggregation policy has to be adopted. The result will be 

dynamically updated with the incoming partial results. 

Thanks to the wait-by-necessity synchronization 

mechanism, a result can be immediately used to execute a 

method call, even if all the results are not available. 

In order to simplify distributed programming, more 

abstractions and high-level distributed models should be 

delivered by a group communication mechanism at 

programming level, in order to free the programmer from 

the implementation details of system aspects of 

programming such as object distribution, mapping and 

load balancing mechanisms. This leads also to a 

performance improvement, thanks to the possibility to 

automatically and transparently adapt the application to 

the system configuration. 

 We propose to extend the syntax of group creation and 

to change the syntax and semantics of group 

management. To this end, we introduce a dynamic 

internal behavior, called Group Behavior, for each 

ProActive group, so as to define the semantics adopted by 

the group for a method invocation. Through the definition 

of a behavior and its dynamic assignment to a group, this 



one can change its internal behavior at run-time and new 

policies can be easily implemented and attached without 

interventions on the library or even on the application 

code. In fact, through the Java reflection, a newly created 

group behavior can be loaded during the program 

execution to install a different behavior in a running 

group. This way, a group can transparently adapt its 

behavior to the context in which it operates. 

 

3. Group semantics and communication 

 
 In recent years, several group semantics have been 

defined. Each of them contributes to specify the behavior 

of a group. In particular, from the point of view of the 

method invocation the following semantics can be 

individuated: 

� Request mapping: it handles the mapping of each  

request to the group members. Some examples are (1) 

One, the request is assigned to only one group member, 

selected with a scheduling policy (for example random, 

round-robin, more sophisticated policies based on QoS) 

[15]; (2) Fixed, the request is scheduled for a defined 

number of group members; (3) All, the request is 

propagated to all the group members. 

� Input parameters distribution: it allows for splitting 

the input parameter of each group method before sending 

the request to the group members selected for the request 

mapping. Examples are: (1) Broadcast, an input 

parameter of the method invocation is sent to all the 

scheduled group members; (2) Scatter, a group that 

receives the invocation of a method could be able to split 

the value, received as parameter, in a number of chunks 

and to pass each one to the same method of each member. 

� Output parameters collection: it handles the return 

value replied to the caller. Examples are (1) Gather, the 

output parameter is obtained collecting the partial results 

of the group members; (2) Merging, the output parameter 

is obtained by assembling the partial results of the group 

members. 

� Synchronization: it specifies the condition that blocks 

the caller when a return parameter of a group method 

invocation is used. (1) All, the totality of the scheduled 

group members execute the request, and all the results are 

to be collected and returned to the caller; (2) Majority, the 

execution request is active until the majority of the 

scheduled group members have executed the request and 

replied the results; (3) One, in this case, groups can be 

used to improve the reactivity related to the processing 

triggered by a method of the group by moving the 

invocation to all the scheduled members and collecting 

the result coming from the more reactive or nearer 

member; (4) Fixed, a number of executions specified by 

the user are required. 

From the point of view of communication inside a group, 

the following schemes can be adopted:  

- Unicast, a point-to-point communication. In this case 

each member is contacted separately in order to receive 

different input data.  

- Multicast, a point-to-multi-point communication. In 

this case the group is subdivided in two or more 

subgroups and, for each one, input data are delivered to 

all the members. 

- Broadcast, all the members receive the same input. 

 Communication semantics have to be selected 

according to the behavior chosen for the group. For 

example the multicast semantic is adopted when a request 

execution is sent to a part of the group members and  the 

input parameters are sent with the broadcast semantic, 

etc., whereas the unicast semantic is adopted for a request 

execution when an input parameter is scattered and each 

part has to be sent to a different group member. 

 For each one of the semantics reported above, a 

reliable or unreliable schema can be adopted, depending 

on the selected semantics of the group.  
 Some group semantics for the creation phase can also 

be individuated. Examples are the policy for the selection 

of host nodes on which allocate the group nodes, the 

management of each constructor parameter of the group 

members and also the semantic that determines the 

condition of success of a group creation. In this paper 

only the method invocation semantics are analyzed, 

whereas those related to the group creation phase are 

currently under study.  

 

4. Extended ProActive Groups 

 
 To ensure flexibility and extensibility the 

configuration and customization of a behavior for a group 

is obtained through GroupBehavior. Such class specifies 

the behavior of a group in response to the method 

invocation request and is the composition of the four 

semantics defined above. Each semantic has a default 

implementation and can be modified at run-time. 

 A semantic is associated to an instance of one of the 

following interfaces: 

 

- RequestMappingSemantic 

- InputDistributionSemantic 

- SinchronizationSemantic 

- OutputCollectionSemantic 

 

 Each interface has some methods that have to be 

implemented to define a specific semantic. Such methods 

are invoked by a component of the framework, called 

GroupBehaviorEnactor. 

 
RequestMappingSemantic The implementation of the 

method: 
 Vector getMembers(MethodCall mc, Vector 

memberList) specifies the group members at which the 



request has to be sent. It receives an instance of the 

MethodCall class, which contains information on the 

current method invocation on the group (opportunely 

captured at run-time by the MOP), in particular on the 

method signature and the effective arguments. The other 

input parameter is a list of the current group members.  

 

InputDistributionSemantic The implementation of the 

method Vector manageInputs(MethodCall mc, 
Vector memberList, Communicator comm) 
specifies how the input parameters have to be distributed 

to the group members for a method invocation request. It 

receives the MethodCall instance which represents the 

current method invocation request, the list of the group 

members chosen for the request execution by the 

RequestMappingSemantic. The last input 

parameter represents a component responsible for the 

implementation of the logical communication semantic to 

use for data transmission inside a group. Such class has 

the method setLogicalCommunication(String  

commSchema, Parameters qos)  which permits a user 

to configure a logical communication semantic for a 

method execution request. The method uses a string 

representing a communication schema supported by the 

middleware and some parameters of QoS which have to 

be satisfied. Parameters is a class that contains instances 

of Parameter, which is a couple of attribute-value. 

Currently, we consider only a parameter, which 

represents the reliability level defined by the attribute 

“reliability” and can assume the values “reliable” and 

“unreliable”. The communication schemas currently 

supported by the middleware are: “unicast”, “multicast” 

and “broadcast”.  

 From the programming point of view the possibility to 

specify the logical communication semantic inside a 

group is delivered without any awareness on the 

leveraged transport layers supported by the physical 

networks. For example, although unicast group 

communication could be implemented by employing a 

unicast transport protocol such as TCP or UDP, multicast 

and broadcast group communication could be 

implemented both by using a unicast transport protocol 

and a multicast one, depending on the availability of the 

underlying transport layers. 

 Finally the return parameter is a vector which contains 

the result of the distribution semantic applied to each 

effective argument, obtained by the MethodCall instance, 

corresponding to the input parameter identified by its 

index in the parameter list. 

 

SynchronizationSemantic Through the implementation 

of the method: 
void waitFor(MethodCall mc, Vector futures)   

it is possible to specify the synchronization policy when a 

result of a group method invocation is used for another 

method call. Such method is invoked on a vector of future 

objects, each of which is associated to the asynchronous 

call on a group member scheduled for the execution.  

 This method can be easily implemented leveraging the 

static methods of ProActive related to the synchronization 

on a future object or a vector of future objects.  

 

OutputCollectionSemantic determines how to reply to 

the caller the final return parameter of a group method 

invocation through the following method:  
Object manageOutput(MethodCall mc, Vector 
futures)  

It receives an instance of MethodCall and a vector of 
future objects, containing the stubs of the results of the 

group members scheduled for the request execution.   

 The extension of the ProActive group requires only 
few modification to the syntax of the current version. In 

particular the client application creates an instance of a 

group specifying the GroupBehavior to apply. As a 

Figure 1. Extended Proactive Group 
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consequence, the static methods of the ProActiveGroup 

class have been modified to include this parameter. See 

the example reported below that shows the creation of an 

empty group of class A. The code shows also how it is 

possible to build an object of GroupBehavior class 
specifying the instances of the semantic objects to adopt, 

and as it is possible to change at run-time one or more of 

them.   
 
public class A{ 
  public A(){} 
  public C method1(Object input) {...} 
  public C method2(Object input) {...} } 
 
public class AllScheduler implements 
RequestMappingSemantic{ 
 public Vector getMembers(Vector memberList, Method Call 
mc) {    return memberList; } } 
 
public class ScatterSemantic  
                implements InputDistributionSemanti c{ 
public Vector manageInput(MethodCall mc,  
                Vector memberList, Communicator com m) {  
  Vector inputs = new Vector();     
  for (int i=0; i<mc.getNumberOfParameter(); i++){ 
   Vector parts=new Vector(); 
   Object par = mc.getParameter(i); 
   if (par.getClass().isArray()) { //default scatte r 
    Object[] o = (Object[])par;  
    Class c = par.getClass().getComponentType(); 
    Object part = null ; 
    int size = memberList.size(); 
    int elemNum = o.length/size;  
    for (int k=0 ; k< size ; k++) { 
       part = Array.newInstance(c,elemNum); 
       for (int j=0;j< Array.getLength(part); j++)  
         Array.set(part, j, o[(k*elemNum)+j]);  
       parts.add(k,part);  
    }  
   } else if . . . .  
   inputs.add(i, parts); } 
 Parameters pars= new Parameters(); 
 Parameter p =new Parameter(“reliability”, “reliabl e”); 
 pars.addParameter(p); 
 comm.setLogicalCommunication(“unicast”, pars); 
 return inputs;   } }  

   
public class MyInputSemantic extends ScatterSemanti c { 
Vector manageInputs(MethodCall mc, Vector memberLis t 
Communicator comm)    
{ Vector inputs = new Vector(); 
  if (mc.getName().equals(“method1”)) {  
   //method1 with scatter semantic 
    inputs = super.manageInputs(mc, memberList, com m);   
  } else if (mc.getName().equals(“method2”)){ 
   . . .// method2: broadcast sem. and multicast co mm. 
   } 
  return inputs; } } 
 
public class OutputAssembler implements 
OutputCollectionSemantic { 
  // return par. is replied assembling partial resu lts 
  Object manageOutput(MethodCall mc, Vector futures){  
   . . . } } 
 
public class AllSynchronizator implements  
SyncronizationSemantic { 
  // synchr. on all parzial results 
  public void waitFor(MethodCall mc, Vector futures ){ 
    ProActive.waitForAll(futures); 
  } } 
 
public class Main{  
 public static void main(String[] s){ 
  Node [] nodes = …;  
  RequestMappingSemantic r = new AllScheduler(); 

  InputDistributionSemantic in = new ScatterSemanti c(); 
  SynchronizationSemantic s = new AllSynchronizator (); 
  OutputCollectionSemantic out = new OutputAssemble r();  
  GroupBehavior beh = new GroupBehavior(r,in,s,out) ; 
  A a = (A) ProActiveGroup.newGroup("A", null, node s, 
beh); 
  . . . // creation of the parameter input 
  C c = a.method1(input);  
  in  = new MyInputSemantic(); 
  beh.setInputDistributionSemantic(in); 
  Group g = ProActiveGroup.getGroup(a); 
  g.setBehavior(beh); 
  c = a.method2(input);   
  c.anotherMethod(); } } 
 

 Group creation is performed through the method 

newGroup  which specifies the group class, the 

constructor parameters, the nodes and the group behavior. 

In the current implementation, the broadcast semantic, 

and the multicast communication schema are adopted for 

the constructor parameters. The reference created by the 

newGroup method is an instance of the class A, and more 

precisely, an instance of  Stub_A, that is a subclass of A 

automatically and dynamically built by the MOP.  

 Thanks to the reification, the semantic related to the 

management of method invocations on groups can be 

intercepted and customized at run-time in order to 

logically show a specific behavior. In particular, when a 

method is invoked on a group instance, the MOP 

mechanism is enacted to start the reification of the 

method call (see fig. 1): (1) an object of MethodCall class 

is built and passed by the group stub to the group proxy to 

execute the method reify(MethodCall); (2) the group 

proxy invokes the method enact of the Group Behavior 
Enactor; (3) the Group Behavior Enactor perform the 

execution request adopting the semantics specified in the 

GroupBehavior object received as parameter. 

 When a result is used for the invocation of a method 

the following steps are executed: (1) the proxy of the 

result invokes the method collect of the Group 

Behavior Enactor; (2) the Group Behavior Enactor 

executes the synchronization semantic and builds the final 

result adopting the semantics specified by the 

GroupBehavior object received as parameter.  

 From the point of view of the communication inside a 

group, some improvements can be made. The idea is to 

perform the data transmission leveraging the potentialities 

of the network connections effectively available at the 

moment. For example some network information can be 

used in order to adopt, when it is possible, as an 

alternative to the commonly used unicast transport 

communication based on TCP/IP, a transport layer based 

on multicast protocols.  

 ProActive is particularly suitable to implement such a 

mechanism, thanks to its high modularity and 

customization mechanisms related to the mapping of 

logical application data communication to the real 

services available at transport level for data transmission 

on physical networks. 



 Our solution is based on the definition of a new 

ProActive component, the Communicator, which has the 

main task to manage the data transmission inside a group 

for each method execution request. Such component is 

the only component to be aware of the communication 

services delivered by the physical networks and so to be 

able to map the logical communication semantic onto an 

available transport layer, that is the most suitable one. 

 For unicast communication, the Communicator can 

access to the Proxy, one for each member scheduled for 

the request execution, which is able to handle the 

transmission on the network of a request adopting one 

among the available unicast transport layers. For 

multicast communication, the Communicator can access 

to the MulticastProxy, a completely new component, able 

to handle the transmission of a request adopting a 

multicast mechanism. 

 The default middleware in ProActive adopted for 

group communications, that is based on RMI, limits the 

possibility to improve the performances of an application 

written using the group communication mechanism. In 

fact RMI is currently implemented on TCP which 

requires a group method invocation to be implemented as 

the sequential invocation of a remote method call on each 

active object. For this aspect, we propose an 

implementation of ProActive groups atop a transport 

layer based on IP multicast. 

 Integrating reliable multicast inside a middleware for 

Grid computing is still an open issue. Some solutions aim 

at easily porting existing applications to multi-destination 

environments by enriching TCP with multicast 

capabilities [6]. To efficiently exploit a multicast 

protocol, the Grid computing middleware should be able 

to manage the sub-parts of the Grid infrastructure in 

which the multicast communication is supported at data-

link or network layers. This is the case of a cluster in 

which the resources are connected through a common 

LAN which supports broadcast communication at data-

link layer, or a set of workstations directly connected to 

an IP multicast-enabled router. 
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 Unreliable multicast typically provide scalability up to 

tens of thousands of nodes, but its semantics are generally 

too weak for application developers to depend upon. 

Messages are subject to long and unpredictable 

transmission delays, message loss, and out of order 

delivery. Processes may crash and network links may fail; 

such failures are hard to detect when the communication 

delays are unpredictable and messages can be lost. To 

avoid this, we can use a reliable multicast service to 

integrate into the transport layer of ProActive to ensure 

that a message from a correct process reaches all the 

correct participants.  

 

5. A case study: the implementation of the 

master/slave model 
 

 The master-slave pattern [16] for distributed 

programming was implemented to test our proposal. Two 

implementations of this programming model are shown 

and compared, the first one adopts the native group 

mechanism and the second one adopts the extended group 

mechanism. A slave object is implemented by means of a 

group member, each of which is opportunely distributed 

onto remote machines. 

 The four semantics described above have to be 

specialized in order to define the specific behavior of a 

group of objects which has to implicitly implement such 

programming model.  

 

RequestMappingSemantic. The request execution has to 

be sent to all the slaves, in order to leverage all the 

computational power of the distributed resources on 

which them are instanced, so the already defined 

AllScheduler class can be used to set such semantic. 

 

InputDistributionSemantic. For the master/slave pattern it 

has to be defined how the initial workload is divided 

among the slaves. The decomposition mechanism on 

input parameters is delivered by the already defined class 

ScatterSemantic. 

 

SynchronizationSemantic. The result of a master/slave 

computation is obtained combining all the results of the 

slaves, so the synchronization policy has to be a wait for 

all the results, already implemented by the class 

AllSynchronizator. 
 

OutputCollectionSemantic. The reconstruction of 
the final result from the partial results of the slaves is 

defined by the default output collection semantic defined 

by the already defined class OutputAssembler. 

 

 In the following, the class MSGroupBehavior is 

shown. Such class represents the group behavior for the 



master/slave pattern, built adopting the semantics defined 

above.  
 
public class MSGroupBehavior extends GroupBehavior { 
 public MSGroupBehavior() { 
  RequestMappingSemantic r = new AllScheduler();  
  InputDistributionSemantic in = new ScatterSemanti c(); 
  SynchronizationSemantic s = new AllSynchronizator (); 
  OutputCollectionSemantic out = new OutputAssemble r(); 
  super(r,in,s,out);  } }  

 

 The canonical matrix multiplication is used as case 

study. Class Matrix  is used to represent the abstract 

data-type matrix, and delivers the methods necessary to 

perform the row-for-column multiplication. In particular 

Matrix delivers a constructor Matrix (float[][]  m)  

where the parameter m is a two-dimensional array of 

float, and the method Matrix multiply (float[][] 

a) , that performs the multiplication algorithm where the 

current instance represents the right matrix and the matrix 

passed as parameter the left matrix. Such matrix has to be 

split in equivalent sub-parts, using a row-based 

decomposition, each of that has to be sent to a different 

group member that represents a slave object. On the other 

hand, the constructor parameter will be the overall right 

matrix, which so will be the same for each of them. 

 

5.1. Native vs Extended Groups: code writing 
 

 The implementation adopting the native Proactive 

group mechanism is the following: 

 
public class Main1 { 
 public static void main (String args[]) { 
  Matrix mDxGroup, mSxGroup result; 
  Node[] nodes = null; // nodes list for slaves 
  float[][] a, b; 
  // def. of the left mat. b and right mat. a 
  int totalRows = b.length;  
  Object[] po = new Object[1]= {a}; 
  mDxGroup = (Matrix) 
       ProActiveGroup.newGroup("Matrix", po, nodes) ; 
  Object[] parts = createSubMatrices(b, nodes.lengt h); 
  Object[][] pars = new Object[nodeList.length][]; 
    for (int i=0 ; i < nodeList.length ; i++) { 
    po = new Object[1] {parts[i]}; 
    pars[i] = po; } 
    mSxGroup =  
(Matrix)ProActiveGroup.newGroup("Matrix", pars, nod es); 
    ProActiveGroup.setScatter(mSxGroup); 
    Matrix gResult = mDxGroup.multiply(mSxGroup); 
    Matrix result = reconstruction(gResult, totalRo ws);   
  } }   

 
public Object[] createSubMatrices(float[][] m, int n){  
    Object[] parts = new Object[n]; 
    int widthSubMatrix = m.length / n; 
    for (int i=0 ; i < n ; i++) { 
    float[][] d = new float[widthSubMatrix][]; 
    for (int j=0 ; j < d.length ; j++)  
    d[j] = m[(i*widthSubMatrix)+j]; 
      parts[I]=d; 
    } 
    return parts; } 
 
public Matrix reconstruction(Matrix group, int rows ) {  
  int index = 0; 
  Matrix partial = null; 
  int size =  ProActiveGroup.size(group); 

  float[][] d = new float[rows][]; 
  for (int i=0 ; i < size ; i++) { 
    partial = ((Matrix)(ProActiveGroup.get(group,i) )); 
    int  widthTmp = partial.getWidth(); 
    for (int j=0 ; j < widthTmp ; j++) { 
   d[index] = partial.getRow(j); index++; 
    } } 
  return new Matrix(d); } 

 
 As it is possible to note, it is necessary to define a 

ProActive group which will used to perform the 

distributed multiplication. The tasks related to the 

master/slave pattern implementation, are explicitly 

provided by the programmer. Such tasks are essentially 

those performed by the master object, that are the 

configuration of the input parameter for each group 

member and the collection of the results and their 

assembling in order to deliver the final result matrix to the 

user. In particular, in order to perform the multiplication 

algorithm on a part of the left matrix, this has to be 

explicitly split, and the obtained sub-parts have to be used 

to build a group of Matrix objects to use with the scatter 

semantic. The result parameter is a group of Matrix 

objects, so an assembling algorithm has to be written in 

order to extract each group member and to merge the 

partial matrices in the final one. Such implementation of 

the master/slave pattern requires so to the programmer 

many tasks, and the group mechanism doesn’t permit to 

effectively simplify the distributed programming.  

 The implementation adopting the extended Proactive 

group mechanism is the following: 

 
public class Main2 { 
  public static void main (String args[]) { 
    Matrix mDxGroup, result;  
    Node[] nodesList = null;// nodes list for slave s 
    float[][] a, b;// … def.left mat. B, right mat.  a   
    GroupBehavior msbeh = new MSGroupBehavior(); 
    Object[] po = new Object[1] {a}; 
    mDx = (Matrix) ProActiveGroup.newGroup("Matrix" , 
      po, nodesList, msbeh);  
    result = mDx.multiply(b);  
   . . . // use of the result matrix  } } 
 

 It is possible to note as the distributed programming is 

really simplified adopting the extended group mechanism 

and the group behavior for the master/slave pattern, 

thanks to the fact that it maintains completely transparent 

to the programmer the details of its implementation.    

   

5.2 Native vs Extended Groups: performance 

evaluation 
 

 A performance evaluation of the proposed approach 

was conducted by comparing the performances obtained 

with two different implementations of the case-study. An 

implementation was based on the original groups and 

unicast communication, the other one was based on 

extended ProActive groups and multicast communication. 

For the first case, the default ProActive implementation 

based on Java RMI was adopted, while for the second one 



a prototypical version of the ProActive group mechanism 

was implemented and a reliable multicast protocol 

(TRAM), included in JRMS 1.1, was used. 

The testbed was a cluster of eight nodes, each one 

equipped with Intel Pentium II 350 Mhz, 128 MB of 

RAM and 10/100 Mbps network card, and a machine 

equipped with Intel Pentium IV 2.4 Ghz, 256 MB of 

RAM and 10/100 Mbps network card.   

 
Fig. 3 Performance evaluation 

 
 Fig. 3 shows the execution times of the application 

matrix multiply, considering a fixed matrix dimension to 

1000x1000 float number, and a varying number of slaves. 

As it is possible to note, the implementation based on 

reliable multicast exhibits better performances, mainly 

due to the reduced traffic on the network. The adopted 

implementation in fact employs multicast communication  

for the creation group members, each of which receives 

the right matrix with the broadcast semantic, so strongly 

reducing the network utilization compared to repeated 

unicast communication adopted by the original ProActive 

groups. 

 

6. Conclusions 
 

 The paper presented and discussed an extension of 

ProActive groups in order to improve their features for 

Grid environments. The extension regards both the 

programming interface and communication. This way, 

programmers can define specific semantics for groups 

and dynamically install them in each group instance. 

These semantics specify the internal behaviour of a group 

and create a binding with a desired communication layer 

and protocol.  

A case study shows both the flexibility of the proposed 

approach and the improvement of performance when IP 

multicast can be adopted for communication. 

In the future, configurable semantics will be associated 

also to the creation phase of each group and resource 

management services provided by low-level Grid 

middlewares will be used to define dynamic mappings 

between group members and computational resources.  
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