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ABSTRACT
Group communication is a crucial feature for high-performance
and Grid computing. While previous works and libraries
proposed such a characteristic (e.g. MPI, or object-oriented
frameworks), the use of groups imposed specific constraints
on programmers – for instance the use of dedicated inter-
faces to trigger group communications.

We aim at a more flexible mechanism. More specifically,
this paper proposes a scheme where, given a Java class, one
can initiate group communications using the standard pub-
lic methods of the class together with the classical dot no-
tation; in that way, group communications remains typed.
Furthermore, groups are automatically constructed to han-
dle the result of collective operations, providing an elegant
and effective way to program gather operations.
This flexibility also allows to handle results that are groups
of remotely accessible objects, and to use a group as a means
to dispatch different parameters to different group members
(for instance in a cyclic manner). Furthemore, hierarchical
groups can be easily and dynamically constructed; an im-
portant feature to achieve the use of several clusters in Grid
computing.

Performance measures demonstrate the viability of the
approach. The challenge is to provide easy to use, efficient,
and dynamic group management for objects dynamically
distributed on the Grid.

Categories and Subject Descriptors
D.3.2 [Java] : Library, Distributed Computing

General Terms
Languages, Experimentation, Design, Performance, Mea-
surement
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1. INTRODUCTION
Programming high-performance applications requires the

definition and the coordination of parallel activities. Hence,
a library for parallel programming should provide not only
point-to-point but collective communication primitives on
groups of activities.

In the Java world, the RMI [12] mechanism is the stan-
dard point-to-point communication mechanism, and it is ad-
equate mainly for client-server interactions, via synchronous
remote method call. In a high-performance computing con-
text, asynchronous and collective communications should be
accessible to programmers, so the usage of RMI is not suffi-
cient.

We have developed a 100% Java library, ProActive (www.
inria.fr/oasis/ProActive), for parallel, distributed, con-
current computing with security and mobility. RMI is cur-
rently used as the transport layer. Besides remote method
invocation services, ProActive features transparent remote
active objects, asynchronous two-way communications with
transparent futures, high-level synchronisation mechanisms,
migration of active objects with pending calls and an auto-
matic localisation mechanism to maintain connectivity for
both “requests” and “replies”.

This paper presents the design of a method invocation
mechanism on groups of active objects and its implementa-
tion in the framework of the ProActive library. Alternate
approaches for parallel and distributed computing in Java
include in the use of more dedicated parallel programming
frameworks, such as parallel and distributed collections [7]
which hide the presence of parallel processes, or in imple-
menting MPI-like libraries in an SPMD programming style
[10]. Our group mechanism is more general, as it enables
to build such alternate parallel programming models, while
being able to provide group communication to distributed
applications originally not aimed at being parallel, thus en-
abling code reuse. For instance, an active object is able
to execute a remote method invocation on multiple active
objects at once, without their active involvement. By com-
parison, in MPI, a collective operation is executed by having
all processes in the group call the communication routine,
with matching arguments.
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The work presented in [9] is the closest to ours: the objec-
tives and the approach are quite similar. It will be discussed
in section 2.2. But, as further explained, we significantly ad-
vance its capabilities with more flexibility and dynamicity.

This paper is organized as follows: after a background and
related work part, the principles and design of the typed
group communication mechanism are presented. The im-
plementation is sketched in section 4, and some performance
measurements of the basic mechanism are provided and anal-
ysed. The section 4 ends up with the implementation of a
real example.

2. BACKGROUND AND RELATED WORK

2.1 Distribution and Mobility with ProActive
As ProActive is built on top of standard Java APIs1, it

does not require any modification to the standard Java exe-
cution environment, nor does it make use of a special com-
piler, pre-processor or modified virtual machine. The model
of distribution and activity of ProActive is part of a larger
effort to improve simplicity and reuse in the programming of
distributed and concurrent object systems [3, 4], including
a precise semantics [1].

2.1.1 Base model
A distributed or concurrent application built using ProAc-

tive is composed of a number of medium-grained entities
called active objects. Each active object has one distin-
guished element, the root, which is the only entry point to
the active object. Each active object has its own thread of
control and is granted the ability to decide in which order
to serve the incoming method calls that are automatically
stored in a queue of pending requests. Method calls (see fig-
ure 1) sent to active objects are always asynchronous with
transparent future objects and synchronization is handled by
a mechanism known as wait-by-necessity [3]. There is a short
rendez-vous at the beginning of each asynchronous remote
call, which blocks the caller until the call has reached the
context of the callee (on Figure 1, step 1 blocks until step
2 has completed). The ProActive library provides a way to
migrate any active object from any JVM to any other one
through the migrateTo(...) primitive which can either be
called from the object itself or from another active object
through a public method call.

2.1.2 Mapping active objects to JVMs: Nodes
Another extra service provided by ProActive (compared

to RMI for instance) is the capability to remotely create
remotely accessible objects. For that reason, there is a need
to identify JVMs, and to add a few services. Nodes provide
those extra capabilities : a Node is an object defined in
ProActive whose aim is to gather several active objects in
a logical entity. It provides an abstraction for the physical
location of a set of active objects. At any time, a JVM
hosts one or several nodes.The traditional way to name and
handle nodes in a simple manner is to associate them with
a symbolic name, that is a URL giving their location, for
instance: rmi://lo.inria.fr/Node1.

As an active object is actually created on a Node we have
instructions like:

1Java RMI [12], the Reflection API [11],...

a = (A) ProActive.newActive("A", params,

"rmi://lo.inria.fr/Node1")

Note that an active object can also be bound dynamically to
a node as the result of a migration. In order to help in the
deployment phase of ProActive components, the concept of
virtual nodes as entities for mapping active objects has been
introduced [2]. Those virtual nodes are described externally
through XML-based descriptors which are then read by the
runtime when needed.

2.2 Related work
The aim of group communication mechanism presented

in [9] is to generalize all kind of communications (point-
to-point or collective, synchronous or asynchronous, local
or remote). As so many different communication modes
are available, it requires some effort from the programmer
in order to choose the desired communication mode. The
main difference in the mechanism we present here is that
the group communication mechanism is an additional and
smoothly integrated mechanism, built around an already ex-
isting rich underlying framework for point-to-point commu-
nications. Thus, programmers can benefit at the same time
from all kind of communication patterns in a flexible way
and without additional work. For instance, here is a code
example from [9]:

class SumImpl extends GroupMember implements Sum{...};
// On one place, for instance, on the group
// member whose rank is 0:
// Creation of a group with name "Name"
// N is the number of expected members

Group.create("Name", N);

// On every member of the group:
// (1) create a group member

SumImpl sum = new SumImpl();

// (2) Enroll this object as a member of the
// group with name "Name"
// join blocks until N members have joined

Group.join("Name", sum);

// On one place, for instance, on the group
// member whose rank is 0:
// (1) gain access to the group as a whole
// via a stub:

Sum stub = (Sum) sum.createGroupStub();

// (2) choose the required communication mode
// for each method to call in the program:

Group.setInvoke(
stub, "void add(double v)", Group.GROUP);

// If method with signature above does not
// exists, it raises an exception at run-time
// and the communication mode is not changed

...

// (3) triggers a method call towards each
// member of the group:
// each member adds the value 42.0 to its own value

stub.add(42.0);

In our approach, thanks to reification and meta-object
protocol techniques, it is never required, as in [9], to pass
the signature of the remote method as a parameter of a
group communication related instruction.

In the code above, the requirement to pass
"void add(double v)"
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3− A future object
is created 

1− Object A performs
a call to method foo

2− The request for foo
is appended to the queue

5− The body updates the future
with the result of the execution of foo

6− Object A can use the result
throught the future object

4− The thread of the body
executes method foo on object B

Object B

Object BObject A

Proxy Body

Object A

Future

Result

Local node Remote node

Figure 1: Execution of an asynchronous and remote method call

as a parameter of Group.setInvoke() is to set the invo-
cation mechanism of this method add to be GROUP (by
default, it would have been set to local method call mode;
an alternative would have been to set it to be REMOTE,
such as to get the standard RMI semantics). If for instance
another method might be called on the group members, for
instance, "double get()", the programmer should set the
corresponding communication mode as follows:
Group.setInvoke(stub, "double get()" , Group.GROUP);

The communication mode towards a group of objects must
be set on a per method basis. On the contrary, in our group
mechanism, as soon as an active object gets enrolled in a
group, all the public methods of group members might be
invoked via a group communication. Moreover, the methods
can still be called on each member, via a standard point-to-
point remote communication mode.

Like in [9], our mechanism provides typed group commu-
nication, typed in the sense that only methods defined on
classes or interfaces implemented by members of the group
can be called. This is enforced at compile-time.

3. TYPED GROUP COMMUNICATIONS

3.1 Principles
Our group communication mechanism is built upon the

ProActive elementary mechanism for asynchronous remote
method invocation with automatic future for collecting a re-
ply. As this last mechanism is implemented using standard
Java, such as RMI, the group mechanism is itself platform
independant and must be thought of as a replication of more
than one (say N) ProActive remote method invocations to-
wards N active objects. Of course, the aim is to incorporate
some optimizations into the group mechanism implementa-
tion, in such a way as to achieve better performances than
a sequential achievement of N individual ProActive remote
method calls. In this way, our mechanism is a generalization
of the remote method call mechanism of ProActive, built
upon RMI, but nothing prevents from using other transport
layers in the future.

The availability of such a group communication mecha-
nism, simplifies the programming of applications with simi-
lar activities running in parallel. Indeed, from the program-

ming point of view, using a group of active objects of the
same type, subsequently called a typed group, takes exactly
the same form as using only one active object of this type.
This is possible due to the fact that the ProActive library is
built upon reification techniques: the class of an object that
we want to make active, and thus remotely accessible, is
reified at the meta level, at runtime. In a transparent way,
method calls towards such an active object are executed
through a stub which is type compatible with the original
object. The stub’s role is to enable to consider and manage
the call as a first class entity and applies to it the required
semantics: if it is a call towards one single remote active ob-
ject, then the standard asynchronous remote method invo-
cation of ProActive is applied; if the call is towards a group
of objects, then the semantics of group communications is
applied. The rest of the section will define this semantics.

3.2 Group creation
Groups are created using the static method
ProActiveGroup.newActiveGroup(‘‘ClassName’’,...)

The superclass common for all the group members has to be
specified, thus giving the group a minimal type. Groups can
be created empty and existing active objects can be added
later as described below. Non-empty groups can be built at
once using two additional parameters: a list of parameters
required by the constructors of the members and a list of
nodes where to map those members. In that case the group
is created and new active objects are constructed using the
list parameters and are immediately included in the group.
The nth active object is created with the nth parameter on
the nth node. If the list of parameters is longer than the list
of nodes (i.e. we want to create more active objects than the
number of available nodes), active objects are created and
mapped in a round-robin fashion on the available nodes.

Let us take a standard Java class:

class A {

public A() {}

public void foo (...) {...}

public B bar (...) {...}

...

}

Here are examples of some group creation operations:
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// Pre-construction of some parameters:

// For constructors:

Object[][] params = {{...} , {...} , ... };

// Nodes to identify JVMs to map objects

Node[] nodes = { ... , ..., ... };

// Solution 1:

// create an empty group of type "A"

A ag1 = (A) ProActiveGroup.newActiveGroup("A");

// Solution 2:

// a group of type "A" and its members are

// created at once,

// with parameters specified in params,

// and on the nodes specified in nodes

A ag2 = (A) ProActiveGroup.newActiveGroup(

"A", params, nodes);

// Solution 3:

// a group of type "A" and its members are

// created at once,

// with parameters specified in params,

// and on the nodes directly specified

A ag3 = (A) ProActiveGroup.newActiveGroup(

"A", params[],

{rmi://globus1.inria.fr/Node1,

rmi://globus2.inria.fr/Node2});

Elements can be included into a typed group only if their
class equals or extends the class specified at the group cre-
ation: the classes of all the members of a group have a com-
mon ancestor. Note that we do allow and handle polymor-
phic groups. For example, an object of class B (B extending
A) can be included to a group of type A. However based on
Java typing, only the methods defined in the class A can be
invoked on the group.

The main limitation of the group construction is that the
specified class of the group has to be reifiable, according
to the constraints imposed by the Meta-Object Protocol of
ProActive: the type has to be neither a primitive type (int,
double, boolean,...), nor a final class, in which cases, the
MOP would not be able to create a typed group object.
However, those constraints are easy to explain, to identify,
and to check.

3.3 Group representation and manipulation
The typed group representation we have presented in the

preceding subsection corresponds to the functional view of
groups of objects. In order to provide a dynamic manage-
ment of groups, a second and complementary representa-
tion of a group has been designed. In order to manage
a group, this second representation must be used instead.
This second representation follows a more standard pattern
for grouping objects: the interface Group extends the Java
Collection interface which provides management methods
like add, remove, size, ... Those group management meth-
ods feature a simple and classical semantics (add in group,
remove the nth element, ...) which provides a ranking order
property of elements of a group.

The management methods for a group are not available
on the typed group representation, but instead, on the group
representation. It is a design choice among two possibilities:
one that would have consisted in using static methods of
the ProActiveGroup class in order to manage groups, and

as such, yielding to just one representation of a group. The
other consists in associating to a group two complementary
representations, one for functional use only, the other for
management purposes only. At the implementation level,
we are careful to have a strong coherence between both rep-
resentations of the same group, which implies that modifica-
tions executed through one representation are immediately
reported on the other one. In order to switch from one repre-
sentation to the other, two methods have been defined (see
figure 2): the static method of the ProActiveGroup class,
named getGroup, returns the Group form associated to the
given group object; the method getGroupByType defined in
the Group interface does the opposite.

ProActiveGroupstatic method of the class

Groupmethod of the interface

Typed group

og go

GroupReal java
representation

ProActiveGroup.getGroup(og)

go.getGroupByType()

Figure 2: Typed group and Group representations

Below is an example of when and how to use each repre-
sentation of a group:

// definition of one standard Java object

// and two active objects

A a1 = new A();

A a2 = (A) ProActive.newActive("A", paramsA[], node);

B b = (B) ProActive.newActive("B", paramsB[], node);

// Note that B extends A

// For management purposes, get the representation

// as a group given a typed group, created with

// code on the left column:

Group gA = ProActiveGroup.getGroup(ag1);

// Now, add objects to the group:

// Note that active and non-active objects

// may be mixed in groups

gA.add(a1);

gA.add(a2);

gA.add(b);

// The addition of members to a group immediately

// immediately reflects on the typed group form,

// so a method can be invoked on the typed group

// and will reach all its current members

ag1.foo(); // the caller of ag1.foo() may not belong to ag1

// A new reference to the typed group

// can also be built as follows

A ag1new = (A) gA.getGroupByType();

Notice that groups do not necessarily contain only active
objects, but may contain standard Java objects as members.
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The only restriction is that they be type compatible with the
class of the group. We will see in 3.4 the implication of such
heterogenous groups on the management of communications
towards group elements.

void     (Object o) add

void          (Object ogroup)addMerge

Object           () getByType

Class         ()getType

int         ()indexOf

iterator          ()iterator

void        (int index)remove

int     ()size

//Return the index in the group of the first occurence of the
//specified element. (−1 if the list does not contain this element).

//Return an Iterator on the members in the group

//Remove the object at the specified index.

//Return the number of members

// Return the (upper) class of member.

//Return an object representing the group under the typed form.

//Add an element into the group.

//Merge a group into the group.

... }

...

public interface       extends            {Group         Collection

Figure 3: The Group Interface

3.4 Group communications
A method invocation on a group has a similar syntax to

a standard method invocation:

Object[][] constructorArray = {{...},{...},...};

Node[] nodes = {...,...,... };

A ag1 = (A) ProActiveGroup.newActiveGroup(

"A", constructorArray, nodes);

...

ag1.foo(...); // A group communication

Of course, such a call has a different semantics which is as
follows: the call is asynchronously propagated to all mem-
bers of the group using multithreading. Like in the ProAc-
tive basic model, a method call on a group is non-blocking
and provides a transparent future object to collect the re-
sults. A method call on a group yields a method call on each
of the group members. If a member is a ProActive active
object, the method call will be a ProActive call and if the
member is a standard Java object, the method call will be
a standard Java method call (within the same JVM).

The parameters of the invoked method are broadcasted to
all the members of the group. As described in 3.6, another
semantics is available in order to scatter the parameters to
the group members instead of broadcasting them.

3.5 Group as result of group communications
The particularity of our group communication mechanism

is that the result of a typed group communication is also a
group. The result group is transparently built at invocation
time, with a future for each elementary reply. It will be dy-
namically updated with the incoming results, thus gathering
results. Nevertheless, the result group can be immediately

used to execute another method call2, even if all the results
are not available. In that case the wait-by-necessity mech-
anism implemented by ProActive is used: if all replies are
awaited, then, the future enables to block the caller, but
as soon as one reply arrives in the result group, then the
method call on this result is executed. In the code below,
a new f1() method call is automatically triggered as soon
as a reply from the call vg = ag1.bar() comes back in the
group vg:

// A method call on a group, returning a result

V vg = ag1.bar();

// vg is a typed group of "V": operation

// below is also a collective operation

// triggered on results

vg.f1();

The instruction vg.f1() completes when f1() has been called
on all members.

3− A new group object
     is created

6− Object A can use the results
throught the new group object

4− The thread of the body
executes method foo on object B

2− The request for foo
is appended to the queue

5− The body updates the future
with the result of the execution of foo

1− Object A performs
a call to method foo 
on a group of objects of type B

Object B

Group Proxy

Object B

Object B

Results
(with future)

Body

Local node

Proxys

Remote node

Remote node

Body

Body

Group Proxy
(Future)

Object A

Figure 4: Execution of a remote method call on a

group

The ranking order of elements in a group is a property
that is kept through a method invocation: the nth member
of a result group (i.e., of vg) corresponds to the result of the
method executed by the nth member in the calling group
(i.e., of ag1). We will see later in section 3.7, that another
property is maintained between the group onto which the
call is performed and the group of corresponding results:
hierarchy.

As explained in 3.2, groups whose type is based on final
classes or primitive types cannot be built. So, the construc-
tion of a dynamic group as a result of a group method call is
also limited. Consequently, only methods whose return type
is either void or is a ’reifiable type’, in the sense of the Meta
Object Protocol of ProActive (see above), may be called on
a group of objects; otherwise, they will raise an exception at
run-time, because the transparent construction of a group
of futures of non-reifiable types fails.

To take advantage with the asynchronous remote method
call model of ProActive, some new synchronisation mech-
anisms have been added. Static methods defined in the
ProActiveGroup class enable to execute various forms of

2This call will be either a standard call or a ProActive re-
mote call, depending of the real type of results
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synchronisation. For instance: waitOne, waitN, waitAll,
waitTheNth, waitAndGet, ... For instance:

// A method call on a typed group

V vg = ag1.bar();

// To wait and capture the first returned

// member of vg

V v = (V) ProActiveGroup.waitAndGetOne(vg);

// To wait all the members of vg are arrived

ProActiveGroup.waitAll(vg);

3.6 Dispatching parameters using groups
Regarding the parameters of a method call towards a

group of objects, the default behaviour is to broadcast them
to all members. But sometimes, only a specific portion of the
parameters, usually dependent of the rank of the member in
the group, may be really useful for the method execution,
and so, parts of the parameter transmissions are useless.
In other words, in some cases, there is a need to transmit
different parameters to the various members.

A common way to achieve the scattering of a global pa-
rameter is to use the rank of each member of the group,
in order to select the appropriate part that it should get in
order to execute the method. There is a natural traduction
of this idea inside our group communication mechanism:

the use of a group of objects in order to represent
a parameter of a group method call that must
be scattered to its members.

A one to one correspondence between the nth member of
the parameters group and the nth member of the group is
obtained by the ranking property already mentioned in 3.5.

Like any other object, a group of parameters of type P
can be passed instead of a single parameter of type P speci-
fied for a given method call. The default behaviour regard-
ing parameters passing for method call on a group, is to
pass a deep copy of the group of type P to all members
3. Thus, in order to scatter this group of elements of type
P instead, the programmer must apply the static method
setScatterGroup of the ProActiveGroup class to the group.
In order to switch back to the default behaviour, the static
method unsetScatterGroup is available.

// Broadcast the group gb to all the members

// of the group ag1:

ag1.foo(gb);

// Change the distribution mode of the

// parameter group:

ProActiveGroup.setScatterGroup(gb);

// Scatter the members of gb onto the

// members of ag1:

ag1.foo(gb);

Notice that, should the parameter group be bigger than
the target group, the excess members of the parameter group
will be ignored. Conversely, should the target group be

3If the members of the group of type P are in fact active
objects of type P, then only copies of the stubs are done. In-
deed, the group collecting such members does not effectively
contain a copy of those active objects, but only references
to them.

larger than the size of the parameter group, then the mem-
bers of the parameter group will be reused (i.e. sent more
than once) in a round-robin (cyclic) fashion.

Note that this parameter dispatching mechanism is in
many ways a very flexible one. It provides:

• automatic sending of a group to all members of a group
(default),

• the possibility to scatter groups in a cyclic manner
(setScatterGroup),

• the possibility to mix non-group, group, cyclic-scatter
group as arguments in a given call.

All of this is achieved without any modification to the method
signature.

3.7 Hierarchical groups
In order to be able to build large applications, the concept

of hierarchical group is available:
a group of objects that is built as a group of groups.

This mechanism helps in the structuration of the appli-
cation and makes it more scalable. A hierarchical group is
easily built by just adding group references to a group:

// Two groups

A ag1 = (A) ProActiveGroup.newActiveGroup("A",...);

A ag2 = (A) ProActiveGroup.newActiveGroup("A",...);

// Get the group representation

Group gA = ProActiveGroup.getGroup(ag1);

// Then, add the group ag2 into ag1:

gA.add(ag2);

As seen previously, a group of results reflects a group of
method calls (i.e. the nth member of the result group cor-
responds to the result of the method executed by the nth

member in the group). A similar correspondance exists for
hierarchical groups: the nth member of the result group will
be in fact a future to a group of results that corresponds to
the group method call executed by the nth member in the
calling group.

Note that one can merge two groups, rather than add
them in a hierarchical way. This is provided through the
member addMerge of the Group interface (see Figure 3). For
instance, the instruction

gA.addMerge(ag3);

merges a group (by first flattening it) into an existing one.

4. IMPLEMENTATION, EXAMPLE AND
BENCHMARKS

4.1 Principles and basic performances
A stub is generated by the MOP of ProActive in order to

locally represent a typed group (this is the same stub as gen-
erated for the representation of an active object). The stub
is dynamically built, extending the class of the objects that
can be included as members, thus yielding a typed group.
Thanks to inheritance and polymorphism, the stub object
acts as representative of the group and is polymorphically
compatible with the typed group (and also with a single
active object of this type).

The stub is connected to a proxy for group, programmed in
the ProActive implementation. The proxy for group stores
one reference to each group member. The role of the proxy
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for group is to transmit the method call to each of the mem-
bers. This is done with multithreading, so as to introduce
asynchronism and communication overlap for the multiple
method calls. Figure 4 gives the details of the implementa-
tion, except that the stub for a B in figure 1 or for a group
of B in figure 4 are not represented (the field of the object
”A” pointing to an object of type ”B”, does not actually
store a reference to a ”B”, but a reference to a stub for type
”B”).

But, as a proxy for group contains copies of proxies for
each of its elements, then, it might be the case that several
proxies for the same group replicated on different virtual
machines (i.e., on ProActive nodes) be incoherent. Indeed,
should a member dynamically join a group, then, the local
proxy for this group would be updated, but other copies of
that might exist elsewhere would not be automatically up-
dated. Nevertheless, it is possible to extend the basic group
communication mechanism, in such a way as to maintain
coherent representations of groups. A consequence of this
design choice is that it is not necessary to have a central-
ized server that stores group representations and that would
be asked to propagate method calls to members of a given
group. In this way, our mechanism is very scalable.

We now present some performance measurements for group
creation and communication. The experiments are run onto
a 100 Mb/s Ethernet local area network connecting Pen-
tium III PCs under Linux with Sun JVMs version 1.3. Each
experiment is run 1,000 times, and the curves on figures 5
and 6 plots average durations.

Figure 5 shows the durations required to create remote
active objects, for which no constructor parameter is re-
quired. The number of active objects, members of the group
varies between 1 and 200. For measurement purposes, after
a group creation call, the caller is blocked until all members
have been created and have joined the group. The creation
duration measures this elapsed time (shown as ...with guar-
antee of creation...). Those remote objects are created in a
cyclic manner on 10, 20 or 30 computers on the same local
area network. When the number of computers increases,
then, the number of group members to create on each de-
creases, so the total creation duration also proportionally
decreases. As one thread is dedicated to the creation of each
member of the group, then the group creation at the caller
side almost immediately returns (see curve with groups, with
asynchronous creation (10 hosts)): the object which initi-
ated the group creation thereby is able to resume its job
while effective group member creations are executed on re-
mote ProActive nodes.

Figure 6 presents the durations for a group method call,
depending on the number of members in the groups com-
pared with standard ProActive method call towards active
objects. The experiment with guarantee of delivery consists
of one group method call, followed by a barrier synchro-
nization of the object that has initiated the group method
call. Recall that there is a short rendez-vous at the begin-
ning of each asynchronous remote call (see section 2.1) in
ProActive. Then, this experiment measures the total dura-
tion of the concurrent and remote executions of rendez-vous
triggered by the group method call. As we use a thread
for each call in a group communication, then, the execution
of a method call on a group of N remote active objects is
more efficient than triggering successively N ProActive re-
mote method calls, one for each remote active object (see
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Group members are mapped onto 10 remote hosts

4.2 A standard example
To validate the design and implementation of group com-

munication, we have programmed a basic numerical appli-
cation pertaining to a parallel dense matrix multiplication.
We have choosen the algorithm based on the Broadcast-
Broadcast Approach described in [8]. This algorithm per-
tains to our work as it extensively uses collective communi-
cations. As our group communication features some asyn-
chronism, we foresee performances improvements compared
to the same algorithm implemented without using the group
mechanism but only point-to-point ProActive method calls.

Like most of the algorithms for parallel dense matrix mul-
tiplication, the Broadcast-Broadcast Approach algorithm per-
forms a multiplication of the form C = αAB + βC on a two
dimensional logical process grid with P rows and Q columns.
In this demonstration we consider only the case where P=Q.

Once the distribution is done, sub-matrices of the two
matrices to multiply are located on each computer which
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takes part in the computation. The Broadcast-Broadcast
Approach algorithm consists in four steps:

1. Broadcast the sub-matrices of A along the rows.
2. Broadcast the sub-matrices of B along the columns.
3. Update partial C sub-matrices with A and B sub-

matrices multiplication in each process.
4. Repeat Step 1 through Step 3 P times.

At the end of those steps, the sub-matrices of C contain the
result of the A*B multiplication.

It is obvious that each process of the logical grid will be
represented by one active object, whose class represents a
sub-matrix.

The active objects of each row (resp. column) of the log-
ical grid build up one group. Broadcast communication
of sub-matrices along one row (resp. one column) will be
achieved thanks to the group method call mechanism. Here
is an implementation of the algorithm :

// The method multiply is a basic centralized matrix
// multiplication; it updates the right sub-matrix
// of C.

// row[i] and column[i] return the i-th row and i-th
// column of the logical grid, in a typed group form.

// The distributed matrix multiply method
// implementation :
for (int i=0 ; i<P ; i++)

A.row[i].multiply (B.column[i]);

The mechanism of group communication provides a sim-
pler implementation. With just two lines of code, we replace
about twenty lines of pseudo-instructions seen in [8].

Figure 7 shows the time spent in order to compute the
matrix multiplication depending of size of one side of square
matrix. Two implementations of the algorithm are tested.
One uses the ProActive library without group communica-
tion mechanism, the other uses the group communication
mechanism. Experimentations were done using either one
(see curve centralized) or nine Intel Pentium3 933MHz on
the same local area network as above (see curves distributed
and distributed using groups).
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Again, this experiment proves that the implementation
using groups is more efficient than the one without. We
identify two reasons for this. The first point is that multi-
threading in the multiple ProActive individual method calls
covers the serialization phases of RMI, which is used at the
transport layer. A second point is that some meta-level op-
erations, like the method call reification, are done just once
within the group communication implementation.

5. CONCLUSION AND PERSPECTIVES
Group communication is a crucial feature for high-performance

and Grid computing, for which MPI is generally the only
available coordination model. We try to show now how col-
lective communications offered by our mechanism can be
compared to that offered by MPI.

For the most important ones, such as broadcast, scatter,
gather, our mechanism provides equivalent group communi-
cation patterns:

• broadcast in a group is simply achieved through a group
method call with the information to broadcast as pa-
rameter;

• scatter is achieved in the same way, apart from passing
the scatter group as parameter (see 3.6) to the group
method call;

• gather is achieved within a group of results of a group
method call (see 3.5).

The reduce collective operation may be executed by the
group method caller, just after all results have been gathered
(or, even as soon as they arrive). Reduction is carried on
sequentially within one active object, the caller. Thus, we
do not exploit the opportunity of parallel reduction. But,
in a coarse-grained view of parallelism as used here, parallel
reduction is not as important as for fine-grained parallelism.

We do not provide the most sophisticated but rarely used
collective operations of MPI, such as all-gather, all-to-all,
all-reduce, reduce-scatter, scan. Even libraries such as CCJ
for instance [10], aiming at providing communications in
Java inspired by MPI (as opposed to direct bindings to
native MPI libaries, like mpiJava [5] or Java-centric MPI
[6]) do not provide all those variants. But, as those oper-
ations can be simply implemented by using those from the
set ”broadcast, gather, scatter, reduce”, the motivation to
effectively define them in the library seems to be primarily
for performance optimization purposes.

Notice that the group communication does not directly
support barrier synchronization (i.e. a global rendez-vous)
as in MPI. Again, it is not so important for coarse-grained
parallelism. Nevertheless, it can be programmed in standard
ProActive. But, we have a group coordination feature that
allows a similar effect in which we can guarantee that all
group members have executed the method call and have
returned their result (using the WaitAll primitive presented
in 3.5).

A point to emphasize is that members of the group, ex-
cept the one acting as the root (in the sense of MPI), do
not need to explicitly participate in the group communica-
tion: the method called on the group is executed on each
active object member of the group, by an automatic and
FIFO (by default) service of pending requests, inherent to
ProActive. The effective execution of a collective commu-
nication is thus really more asynchronous, according to an
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MIMD model, than within an SPMD one as featured by
MPI. This loose synchronization may have positive effects
on performances, especially on heterogeneous and loosely
coupled environments such as Grids. For instance, a root
object can even launch a group method call, and, assum-
ing this call returns a group of active objects, the root can
immediately trigger the next group method call. Due to
the rendez-vous of the basic ProActive method invocation
model, there is a guarantee that both method calls will be
received in the same order on every member of the group.

As our ProActive group communication model is more
asynchronous than the one found in SPMD models such
as MPI, we allow more than one group method call exe-
cution on the same group, triggered by different objects,
to interleave. Indeed, as method call results may not be
immediately used (due to the future semantics), then our
asynchronous global communication model is less subject to
deadlocks.

The current implementation optimizes only the network
latency by overlapping point-to-point communications. We
have noticed that the implementation of broadcast, scatter
and gather operations could take advantage of a structura-
tion, as a binomial tree for instance, of the communications
among members of a group. As the meta-level of ProActive
is structured in such a way as to dynamically enable to adapt
the way requests and replies are sent or received, we plan
to use this opportunity to adapt proxies for groups such as
to structure collective communications. Another alternative
we are considering, especially valuable for networks of work-
stations, would be the use of a multicast transport layer.
Notice that the implementation of group communication on
hierarchical groups naturally takes advantage of the under-
lying hierarchical structure. If a member is itself a group,
for instance gathering a group of active objects mapped on
a remote cluster, then, the proxy representing this member
will be sent only one method call that it will then recursively
propagate to its peers.
As a group method call is currently implemented by an RMI
call towards each member of the group, we are currently
working on another optimization that should prove to be
effective in the Java context: achieving a unique RMI seri-
alization for all identical objects in a group communication.

In summary, this paper has presented a group mechanism
which we believe can be very effective for component-based
parallel programming on Grids, with the following features:

• groups of objects need only to be defined at instanci-
ation time, without any change elsewhere in the pro-
gram;

• factories to build groups are provided;
• code for group management (“non-functional code”)

is, by virtue of one group representation, kept separate
from “functional” code, which has only to consider the
typed group representation.
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