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Abstract— This article presents an evolution of classical SPMD
programming for clusters and grids.

It is named ”Object-Oriented SPMD” as it is based on remote
method invocation. More precisely, it is based on an active object
pattern, extended as a typed group of active objects, to which
SPMD’s specificities are added. The proposed programming
model is more flexible: techniques to postpone barrier and to
remove any explicit loop make it possible to privilege reactivity
and reuse.

The resulting OO-SPMD API has been implemented in
ProActive. Good scalability and quite competitive performances,
compared to what is obtained using C-MPI, are demonstrated.
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I. INTRODUCTION: CONTEXT AND RELATED WORKS

A. SPMD programming

SPMD stands for Single Program Multiple Data. SPMD
programming is a common way to organize a parallel program,
on both clusters of workstations and parallel machines, and
more recently also on grids [1]. A single program is written
and loaded onto each node of a parallel computer. Each copy
of the program runs independently, coordination events apart.
So the instruction streams executed on each node can be
completely different, alas for the most common pattern, i.e.,
master-slave, only two different streams are needed. Each copy
of program (process) owns a rank number: a unique ID. The
specific path through the code is in part selected by this ID.

Traditionally, in the SPMD model, the language itself does
not provide implicit data transmission semantics. In general,
the communication patterns are explicit message-passing
implemented as library primitives. This simplifies the task of
the compiler, and encourage programmers to use algorithms
that exploit locality. Data on remote processors are accessed
exclusively through explicit library calls.

SPMD model maps easily and efficiently to distributed and
to parallel applications and distributed memory computing.
The most famous environments implementing a message-
passing SPMD model are PVM (Parallel Virtual Machine) and
MPI (Message Passing Interface).

B. SPMD programming with an Object-Oriented flavour

1) Message-Passing SPMD: In the 1990’s, due to the
increasing success of object-oriented programming, many re-
search groups have experimented the idea to both combine the
usage of an object-oriented programming language (such as
C++ or Java) and MPI (or PVM) for writing and running paral-
lel and distributed applications. One of the precursors has been
the MPI-2 specification itself, collecting the notions of the MPI

standard as suitable class hierarchies in C++, and defining
most of the library functions as class member functions. This
specification has been further extended in Object-Oriented
MPI [2] in order to be able to deal with the transmission
of objects. Essentially, OOMPI provides mechanisms to build
user-defined data types according to the MPI spec, in order
to represent those objects, and further communicating them.
Those approaches have been even further developed with
the success of Java and have eventually lead to two main
categories of propositions for having message-passing SPMD
within Java:

• a wrapping of the native MPI implementation library
itself within the object oriented language (e.g. mpiJava
[3], or JavaMPI [4] where wrappers are automatically
generated)

• an MPI-like implementation of a message-passing specifi-
cation as MPI, written using the object-oriented language
itself, and available as a library. Notably, MPIJ [5] which
seeks to be competitive with native MPI implementations.
The most achieved is MPJ [6], in which notions such as
Communicators, Datatype for the type of the elements in
the message buffers, etc, are modeled as classes.

Overall, in the early 2000’s, those works – done under
the auspices of the JavaGrande Forum [7] – were considered
as a first phase in a broader venture to define a more Java-
centric high performance message-passing environment. The
main aim was to succeed to conciliate both performance and
portability, while not departing from the consensual goal of
offering MPI-like services to Java programs.

2) Remote method based SPMD: All propositions ground-
ing up on remote method invocation for communication among
activities take for granted that this enables the exchange
of any typed data, by automatic marshaling-unmarshaling.
Clearly, this better suits to the object oriented paradigm than
explicit message-passing, in which send and receive must be
explicitly programmed in matched pairs. One work grounding
on Java remote method invocation, but generalizing it so it
can supports communication between more than two parties is
CCJ [8]. Specifically, CCJ aims at adding collective operations
to Java’s object model (implementing everything on top of
RMI). Parallel activities are expressed as threads groups and
not as objects groups (in fact, activities in Java are expressed
by threads which are orthogonal to objects). As threads may
belong to several groups, this implies that any method of the
CCJ API (e.g. barrier, broadcast, reduce,...)
aiming at executing an MPI-like collective operation must
have the reference of the group of threads as parameter (in



a similar way as passing the communicator as parameter in
any MPI communication). Also, in CCJ, all threads have the
same program and, in particular, any collective operation must
be called by all threads in the implied group. Differently to
the approach followed in CCJ, another concept for collective
communications is to group Java objects into groups, and
extend the remote method invocation mechanism such that it
transparently applies to a group of possibly remote objects.
It fits much better in the object-oriented approach: triggering
the execution of a chunk of code (described in any public
method in the class) in parallel is done simply by calling the
corresponding method on the group, remotely and possibly
asynchronously. By doing this, remote method invocation is
exploited as the only communication mechanism between any
number of remote activities.

Having a group of objects towards which methods are in-
voked is usually considered to be a suitable OO abstraction for
building distributed applications – even if it usually requires
the additional usage of multicast delivery protocols such as
causally or totally order delivery. The suitability of groups
and associated group method invocation mechanisms are more
rarely studied as a suitable support for parallel computing
(notable exceptions being GMI [9] in Java, ARMI [10] in
C++).

C. Contribution

In this paper, we propose a pure object-oriented SPMD
programming model as an extension of a typed group commu-
nication mechanism we previously defined in [11]. For this,
the objects groups supporting the distributed computation will
also be further organized following a topology, i.e. adding the
notion of an ID for each member in the SPMD group and the
way to easily reference its neighbors. Collective operations
will be revisited and extended with barrier synchronization
such as providing a complete Object Oriented SPMD model.

The solution we propose is grounded on ProActive, a
strongly proven programming [12] and deployment model
for distributed object-based computations, on any distributed
memory platforms including grids [13], [14]. ProActive is
based on the active object paradigm, and moreover featuring
a well defined semantics of the computing model [15]. In
this respect, the SPMD programming solution we define is a
smooth and perfectly integrated extension of the active object
principle. We want to demonstrate to the programmer that
using it, he can define programs grounded on a single concept,
the active object. Using this paradigm, he can seamlessly
target the whole spectrum of applications: from sequential
mono-threaded, concurrent and multi-threaded, distributed, up
to parallel and distributed ones.

To our knowledge, a proposition which is close to ours is
GMI [9], (in the objective and in the way to achieve it). A
strong difference comes from the fact that GMI generalizes
Java RMI. As such, it is confronted with its constraints,
specially, the need for the programmer to take care of pos-
sible concurrent executions of a same method (implying to
mix functional code with the usage of regular Java monitor
mechanisms). On the contrary, the active object pattern is

a cleaner abstraction for distributed computing, and as such
should ends up easier for programing Object-Oriented SPMD
applications.

Section II presents briefly the ProActive library. Section III
presents the typed group communication of ProActive and
the recent optimizations we have added to it. Section IV
introduces the complete Object-Oriented SPMD programming
model. One strong advantage is that the corresponding API
is very light: only primitives for SPMD group membership
and barrier synchronizations are required. Indeed, all point-
to-point and collective communications are implicit as the
focus is more on which method to execute in parallel instead
of how to effectively manage the parallel and distributed
associated aspects. Section V presents benchmarks on large
configurations, including comparisons with MPI. Section VI
concludes.

II. THE ProActive LIBRARY

ProActive is an LGPL Java library for parallel, distributed,
and concurrent computing, also featuring mobility and security
in a uniform framework. With a reduced set of simple prim-
itives, ProActive provides a comprehensive API allowing to
simplify the programming of applications that are distributed
on Local Area Network (LAN), on clusters, or on grids.

As ProActive is built on top of the Java standard API1,
it does not require any modification to the standard Java
execution environment, nor does it make use of a special
compiler, pre-processor or modified virtual machine.

a) Base model: A distributed or concurrent application
built using ProActive is composed of a number of medium-
grained entities called active objects. Each active object has
one distinguished element, the root, which is the only entry
point to the active object. Each active object has its own
thread of control and is granted the ability to decide in which
order to serve the incoming method calls that are automatically
stored in a queue of pending requests. Method calls sent to
active objects are always asynchronous with transparent future
objects and synchronization is handled by a mechanism known
as wait-by-necessity [12]. Contrary to classical RMI, all kinds
of method call parameters towards an active object are passed
by (deep-)copy. There is a short rendez-vous at the beginning
of each asynchronous remote call, which blocks the caller until
the call has reached the context of the callee. The ProActive
library provides a way to migrate any active object from
any JVM to any other one through the migrateTo(...)
primitive which can either be called from the object itself or
from another active object through a public method call.

b) Mapping active objects to JVMs: Nodes: Another
extra service provided by ProActive (compared to RMI for in-
stance) is the capability to remotely create remotely accessible
objects. For that reason, there is a need to identify JVMs, and
to add a few services. Nodes provide those extra capabilities:
a Node is an object defined in ProActive whose aim is to
gather several active objects in a logical entity. It provides an
abstraction for the physical location of a set of active objects.
At any time, a JVM hosts one or several nodes. The traditional

1mainly Java RMI and the Reflection API



way to name and handle nodes in a simple manner is to
associate them with a symbolic name, that is a URL giving
their location, for instance rmi://lo.inria.fr/node.

Let us take a standard Java class A. The instruction:

A a = (A) ProActive.newActive("A",params, N1);

creates a new active object of type A on the JVM identified
with N1, for instance rmi://lo.inria.fr/node. Fur-
ther, all calls to that remote object will be asynchronous, and
subject to the wait-by-necessity:

a.foo (...); // Asynchronous call
v = a.bar (...); // Asynchronous call
...
v.f (...); // Wait-by-necessity:

// wait until v gets its value

Compared to traditional futures, wait-by-necessity offers
two important features: (1) futures are created implicitly and
systematically, (2) futures can be passed to other remote
processes.

Note that an active object can also be bound dynamically
to a node as the result of a migration. In order to help in the
deployment phase of ProActive components, the concept of
virtual nodes as entities for mapping active objects has been
introduced [13]. Those virtual nodes are described externally
through XML-based deployment descriptors which are then
read by the runtime when needed. The goal is to be able
to deploy an application anywhere without having to change
the source code, all the necessary information being stored in
those descriptors. As such, deployment descriptors provide a
mean to abstract from the source code of the application any
reference to software or hardware configuration. It also pro-
vides an integrated mechanism to specify external processes
(e.g. JVM) that must be launched, and the way to do it.

III. TYPED GROUP COMMUNICATIONS

The group communication mechanism of ProActive effi-
ciently achieves asynchronous remote method invocation for a
group of remote objects, with automatic gathering of replies.

A. Summary of group communication

Given a Java class, one can initiate group communications
using the standard public methods of the class together with
the classical dot notation; in that way, group communications
remains typed. Furthermore, groups are automatically con-
structed to handle the result of collective operations, providing
an elegant and effective way to program gather operations.

On the standard Java class A used above, here is an example
of a typical group creation:

// A group of type "A" and its 3 members
// are created at once on the nodes
// directly specified, parameters are
// specified in params,

Object[][] params = {{...}, {...}, {...}};
A ag = (A) ProActiveGroup.newGroup("A",

params, {node1,node2,node3});

Elements can be included into a typed group only if their
class equals or extends the class specified at the group creation.

Note that we allow and handle polymorphic groups. For
example, an object of class B (B extending A) can be included
to a group of type A. However based on Java typing, only the
methods defined in the class A can be invoked on the group.
Groups can also be dynamically modified, adding or removing
members, getting a group from a typed group.

A method invocation on a group has a syntax similar to a
standard method invocation:

ag.foo(...); // A group communication

Such a call is propagated to all members of the group using
multithreading: a method call on a group yields a method call
on each of the group members. If a member is a ProActive
active object, the method call will be asynchronous, and if the
member is a standard Java object, the method call will be a
standard Java method call (within the same JVM). By default,
the parameters of the invoked method are broadcasted to all
the members of the group.

An important specificity of the group mechanism is: the
result of a typed group communication can also be a group.
The result group is transparently built at invocation time, with
a future for each elementary reply. It will be dynamically
updated with the incoming results, thus gathering results, as
shown in Figure 1: “result group”. The wait-by-necessity
mechanism is also valid on groups: if all replies are awaited
then the caller blocks, but as soon as one reply arrives in the
result group the method call on this result is executed. E.g. in

// A method call on a group with result
V vg = ag.bar();

// vg is a typed group of "V"
// This is also a collective operation:

vg.f();

a new f() method call is automatically triggered as soon as
a reply from the call ag.bar() comes back in the group
vg (dynamically formed). The instruction vg.f() completes
when f() has been called on all members: this constitutes
a local synchronization point from the point of view of the
initiator of the group method call, i.e., certifying that all peers
in the group ag have executed the method bar(). Another
remark is that collected results, and thus gathered through the
vg group can subsequently be merged. This is like achieving
a global reduction. The reduction operator can be any user
defined method (such as f() in the above example), and
moreover, the operator can be applied as soon as each result
comes back. So, even if the reduction operation is not executed
in parallel, its cost can be hidden by the transmission of the
not yet arrived results.

Other features are available regarding group communica-
tions: parameter dispatching using groups (through the defini-
tion of scatter groups), hierarchical groups, dynamic group
manipulation (add, remove of members), explicit group
synchronization (waitOne, waitAll, waitAndGet); see
[11] for further details and implementation techniques.

B. Optimizations

The group communication mechanism is built upon the
ProActive elementary mechanism for asynchronous remote
method invocation with automatic future for collecting a
reply. As this last mechanism is implemented using standard
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Fig. 1. Method call on group

Java, such as RMI, the group mechanism is itself platform
independent. A group communication must be thought as a
replication of more than one (say N) ProActive remote method
invocations towards N objects. Of course, we incorporated
optimizations into the group mechanism implementation.

a) Common operations factorization: Many operations
are common while invoking a method on a group of objects.
Those operations may be factorized. First is the reification
operation that transforms the method invocation into a Java
object using the Meta Object Protocol. This operation involves
reflection techniques that are known to be expensive. The
method being the same for all group members, the operation
is done just once.

Second point subject to factorization is the serialization of
the method parameters sent during the group communication.
As the serialization process is very slow, we want to avoid the
repetition of this operation. Before the RMI mechanism steps
in, the parameters (and codebase informations) are converted
into a byte array to be more efficiently sent several times by
RMI. This does not apply in the case of scatter group in which
parameters for each member differ.

Figure 2 presents the average time (in milliseconds) spent
to perform one hundred method invocations depending on the
amount of data to send (objects used as parameters). The group
contains 80 objects distributed on 16 machines (cluster of PIII
@ 933MHz interconnected with a 100Mb/s ethernet network).
The upper curve exposes the performances without any opera-
tion factorized. The curve in the middle plots the performances
obtained by factorizing the reification operations. The last
curve represents the performances obtained by factorizing the
reification operations and the serialization. This allows better
performances (up to a 3.9 ratio in the Figure 2).

b) Adaptive threadpool: Using several threads allows to
send messages simultaneously. Doing this way, the delays
required by RMI to make the rendez-vous with each remote
object are recovered and no more added. In order to maintain
the ProActive method invocation semantic, we introduce a
synchronization. We extend the notion of rendez-vous for
group communication: doing this, an asynchronous group
communication blocks until the method invocation has reached
all group members.

Because group membership is dynamic, a fixed number of
threads used to communicate with the group members is not
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Fig. 3. Adaptative threadpool

appropriate. Likewise, a one-to-one group member / thread
ratio is not suitable: too many threads will harm performances.
Our solution is to associate to a group an adaptive pool of
threads. The member / thread ratio may be defined by the
programmer depending of the requirement of its application
(default value is 8).

Figure 3 plots the average time (in milliseconds) spent to
perform one hundred method invocations depending on the
number of objects in a group. The group members are dis-
tributed on 16 machines (cluster of PIII @ 933MHz intercon-
nected with a 100Mb/s ethernet network). The curves represent
the performances depending on the number of threads used
to make the calls. The more we used threads the smaller is
the delay to make the group communication. The four upper
curves are associated with a fixed number of threads. The
lower one is associated with a dynamic number of threads. It
shows better performance, because the number of threads is
(automatically and transparently) at any moment the adequate
number needed.

IV. OBJECT-ORIENTED SPMD

The proposed active objects group mechanism presented
in section III is already a usable and even efficient basis
to program non embarrassingly parallel applications using a
pure object-oriented paradigm, i.e. using only object-oriented
method invocation for e.g. computational electromagnetism
[14], [16]. But, some of the features specific to SPMD pro-
graming were lacking, and their addition constitutes the core



of this section. We name the resulting proposition as Object
Oriented SPMD (OO-SPMD for short).

A. Requirements

These specificities fall into three categories:

• identification of each member taking part in the parallel
computation, and concept of member position relatively
to the others (i.e. neighboring relation among members)

• expression of the program run by each member taking
part in the parallel computation. In pure object groups
based paradigms (e.g. as GridRPC for grid computing
on Network Enabled Servers like NetSolve [17] or Ninf
[18]), members act in a sense as passive servers only
activated by method calls triggered by clients. Servers do
not have their own activity. On the contrary, in SPMD
computing, all members are active by their own even if,
for simplicity, they all execute the same program (e.g., in
all flavors of MPI, in CCJ [8], in GMI [9], this program
is run by the main thread on each process or participating
JVM). In ProActive, each active object is by essence
the support of a proper activity (there is no main, but
a runActivity method). This activity aims at enacting the
sequential service of requests (see paragraph II.a). So, in
our approach, the SPMD program will not be expressed
as a classical big loop, but as the implicit result of a
succession of request services executed in FIFO order.
As will be emphasized below, this way of expressing the
core of any member’s SPMD program enables behaviors
pertaining to reactivity, evolutivity, dynamicity usually
considered to be far away from the traditional SPMD
model.

• full range of collective operations (communication and
global synchronization) among the members. Considering
the presentation of the typed group communications in
section III, only the expression of global synchronization
barriers is lacking and so needs to be considered below.

B. Main principles of OO-SPMD

An OO-SPMD group is defined as follows: it is a group of
active objects where each member has a reference, a group
proxy, towards the group itself (see Figure 4). Each active
object in the SPMD group is also provided with a specific
rank in the group.

// A group of type "A" and its members
// are created at once by an external
// active object

Object[][] params = {{...}, {...}};
A ag = (A) ProSPMD.newSPMDGroup("A",

params, {Node1,...});
// The computation on each member may
// now be started, i.e. invoking a method
// called e.g compute() defined in class A

ag.compute();

On each group member created, one of the first actions
to run is to get the reference of the group it belongs to,
the rank, etc. One must be careful to clearly distinguish a
classical Java reference to the object (this), and a ProActive

Each has a reference towards the group itself
The members forming the SPMD group

The ’external’
active object

Fig. 4. An SPMD group

asynchronous reference to it, as an active object. This last
one enables the active object to implement the parallel task.
Traditionally in SPMD, the parallel task is expressed as an
iterative or recursive loop, which essentially handles message
receptions and triggers the corresponding treatment, according
to the message’s tag (a case or a if control structure is
usually programmed). In OO-SPMD, the parallel task on any
member of the SPMD group is run by repeatitively invoking
asynchronous methods to itself (so, the need to have an
asynchronous reference). A member triggers data receptions
and the corresponding treatment through the asynchronous
service of methods remotely called by other members in the
group. All method services are FIFO-ordered.

// A reference to the typed group I belong to
A a = (A) ProSPMD.getSPMDGroup();
// An asynchronous reference to myself

A me = (A) ProActive.getStubOnThis();
// My rank in the group

int rank = ProSPMD.getMyRank();
// Start the ’iterative’ loop by sending
// myself an asynchronous method call
me.loop();
// To iterate, loop() again calls me.loop()

Moreover, in a traditional SPMD program, execution control
is exclusively based on if statements and process ID or rank
numbers. In our approach, switching execution control can
be also based on dynamically created groups at any moment
at runtime. Such groups can be derived from existing ones
(subgroups, or group combination for instance) or according
to any kind of properties (rank, fields of the object, ...).

C. Topologies

To simplify the access to neighbors in the group with which
a given member must communicate according to the parallel
algorithm, it is useful if the SPMD group is further organized
according to Cartesian topologies (as in MPI). At this time,
we offer the following: line, plan, ring, cube, hypercube, torus,
torusCube (torus in 3 dimensions) but, contrary to statically
designed topologies, the addition of new topologies is open.
Topologies may also be obtained from an other topology. Here
is an example:

// Organize my group as a 2D plan
Plan topology = new Plan(a, WIDTH, HEIGHT);
// Get a ref. to my neighbors in the plan

A left = (A) topology.left(me);



A down = (A) topology.down(me);
...
// One-way communication with neighbors
// in an asynchronous fashion

left.foo(params);
down.foo(params);
...
// Get a ref. to the topology formed by
// the first line of the plan

Line line = topology.line(0);

The notion of neighborhood is strongly attached to the
topology. By extending a topology, the programmer may rede-
fine the neighborhood to best fit the needs of the application.

D. Synchronization barriers

The only collective behavior related methods of our OO-
SPMD API pertain to global barriers. Indeed, as already ex-
plained in section III, all collective (resp. point-to-point) com-
munications within the group can be expressed as applicative-
level method calls triggered via the group proxy (resp. via the
asynchronous reference of the target member).

The standard definition of a global barrier is that all mem-
bers in the group (or those enrolled in the barrier, see below)
must not proceed further in their computation while not all
the members have reached the barrier. Given the active object
model, we propose a slightly different but more appropriate
semantic: from the viewpoint of a member reaching a barrier,
it is effective (i.e. it blocks the member) only in the future:
more precisely the exact moment when the current service has
terminated. In practical terms, all instructions lying after the
barrier in the current method being served will be executed,
so care must be taken (see an example in subsection V-B).
Nevertheless, the meaning of what is a global synchronization
barrier is as usual, but instead of pertaining to the next
instruction, it pertains to the next request’s service: when
encountering a barrier, the service of the first request waiting
in the request queue will be able to proceed on any enrolled
member only when all have reached the barrier.

Technically, when an active object executes a call to a global
barrier this triggers the storage in the front of its request queue
of a specific token. Associated to this token is the total number
of members (including the member itself) to wait for, i.e. that
must reach the barrier. Each time a given global barrier is
reached by a member, this triggers the decrementation of this
number on each member enrolled in the barrier. Eventually,
the barrier is released on each enrolled member, as soon as
the number reaches zero.

Actually, we propose three kinds of barriers, two globals
and one more local:

• A total barrier, within which a string parameter repre-
sents a unique identity name for the barrier. It is assumed
that this blocks all the members in the SPMD group.
ProSPMD.barrier("MyBarrier");

• A neighbor barrier, involving not all the members of an
SPMD group, but only the active objects specified in a
given group. Those objects, that contribute to the end of
the barrier state, are called neighbors as they are usually
local to a given topology. An active object that invokes the
neighbor barrier must be in the group given as parameter.

ProSPMD.barrier("Bar", neighborsGroup);

• A method barrier stops the active object that calls it,
waiting for a request on all the specified methods to be
served. The order of the methods does not matter, nor
the active objects they come from. As such, this barrier
is purely local, and does not trigger extra messages to be
exchanged as the two others.
ProSPMD.barrier({"foo","bar","gee"});

V. EXAMPLE AND BENCHMARKS

We illustrate OO-SPMD with a concrete example. We
choose Jacobi iterations because it is a simple application,
easy to distribute in a traditional SPMD manner. The algorithm
performs local computation and communication to exchange
data. The Jacobi method is a method of solving a linear matrix
equation. Each element is solved by computing the mean value
of the adjacent values. The process is then iterated until it
converges; it means until the difference between old and new
value in absolute becomes lower than a given threshold.

The following code shows the main loop (an iteration based
loop) of a solver. At each iteration, the value at a point
is replaced by the average of the up, down, left, and right
neighbor values. External boundary values are fixed statically
at the beginning of the application and do not change at
runtime.

while (!converged) {
for (y=1 ; y<MATRIX_HEIGHT-1 ; y++) {

for (x=1 ; x<MATRIX_WIDTH-1 ; x++) {
new(x,y) = ( old(x,y-1) + old(x,y+1) +

old(x-1,y) + old(x+1,y) )/4;
if (abs(new(x,y)-old(x,y)) < THRESHOLD) {

converged = true;
}
exchange(new,old);

} } }

The structure of this code is quite simple, so we use
a coarse-grained data-parallel approach to transform it into
a similar parallel code. The arrays old and new are dis-
tributed over nodes taking the form of active objects. Each
active object, named SubMatrix, is responsible for receiving
boundary values from adjacent sub-matrixes and computing its
own part of data.

The parallel algorithm depends of the data distribution
scheme. We choose a two-dimensional distribution scheme. As
shown in figure 5, communications occur at block boundaries.
So the amount of data exchanged is minimized by the two-
dimensional distribution which has a better internal area /
border ratio. With this partition, each sub-matrix may commu-
nicate with two, three, or four neighbors, depending of their
position (respectively at a corner, a border, or in the center of
the whole matrix). This partition is more effective when the
data to processor ratio is large.

Communications appear at sub-matrix boundaries to send
boundaries values to neighbors and receive values of neigh-
bors. A copy of the boundary of each sub-matrix is present in
its neighbor sub-matrix. Storage of boundary data is allocated
at the producer, and at the consumer sub-matrixes. This is a
static allocation because the size and the location of boundary
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Fig. 5. Distributed algorithm

buffers is fixed and never evolve during Jacobi. This is induced
by the Jacobi algorithm itself, but if needed, our framework
could support strongly dynamic algorithms.

A. MPI Jacobi
Using a message passing approach based on asynchronous

send and receive, with the MPI library, the resulting parallel
code is something like:

while (!converged) {
internal_compute(&converged);
MPI_Send(north_border, SUBMATRIX_WIDTH,

MPI_DOUBLE, north, 1,
MPI_COMM_WORLD, &status);

MPI_Recv(border_received_from_north,
SUBMATRIX_WIDTH, MPI_DOUBLE,
north, 1, MPI_COMM_WORLD, &status);

// send and receive for south, east, west
...
boundaries_compute(&converged);
exchange(new,old);

} } }

The send and receive operations are repeated for each com-
munication with a neighbor (up to 4), even if the operations
are the same.

B. OO-SPMD Jacobi

Using our OO-SPMD approach, the code becomes much
concise. The whole matrix is distributed and understood as
a two-dimensional topology using the Plan topology. The
neighborhood of any SubMatrix, named neighbors in
the example, is automatically obtained through methods of
the Plan topology.

me = ProActive.getStubOnThis();
public void jacobiIteration() {
internal_compute(); //updates converged
neighbors.send(boundariesGroup);
ProSPMD.barrier({"send", ... ,"send"});
me.boundaries_compute(); //updates converged
me.exchange();
if (!converged) me.jacobiIteration();

}

Synchronization is done by data flow, and the barrier ensures
that the sub-matrix and its neighbors have exchanged their
own boundaries values before computing the whole bound-
aries. The method calls performed after the barrier must be
asynchronous (put in the queue of the active object), otherwise
they would be served immediately, i.e. before the execution of
the barrier. Overall, according to the semantic of the method

barrier, the data (i.e. parameter of send) will have been
exchanged before the barrier will be released, guarantying that
any member gets the data in order to compute the boundaries
values (boundaries compute).

Data communications to all neighbors is performed us-
ing a scatter group (the group of boundaries values
boundariesGroup): as the real parameter of the send
method is a group declared as of type scatter, it is transparently
scattered to each member of the neighbors group. As for
the MPI version, the construction of the structures containing
boundaries values was not specified on this chunk of code. It
only consists of building a group containing the boundaries.

A very interesting property of our model is that it remains
reactive. It means that any part or any member of an OO-
SPMD application may also serve incoming method call
requests incoming from another application. This is allowed
by the fact that the parallel task is expressed as asynchronous
calls to a method (jacobiIteration for instance): an
external request is thus able to come in between requests
addressed to the active object. We think this flexibility is
very appropriate to one of the many possible applications
of grid computing: the coupling of, on one side a parallel
object-oriented SPMD computation, and on the other side,
an external and remote application that is in charge of, for
instance, steering, visualization, etc.

C. Benchmarks

1) Data scalability: The first benchmark, presented by the
Figure 6, uses a cluster of 16 bi-Pentium III @ 933 Mhz
512MB (SDRAM) - 256 Kb L2 cache, Linux RedHat 2.4.20,
interconnected with a 100 Mb/s Ethernet. Even if machines are
bi-processor, we used only one processor per machine during
our experimentations. For the C/MPI version we used gcc 3.3.2
and MPICH 1.2.5.2. For the Java version, we used the Sun Java
Virtual Machine 1.5.0.

The graphic presents the average duration, in milliseconds,
of one Jacobi iteration depending of the data contained on each
node, in millions of double. The average time was computed
after 100 iterations. Of course, the C language with MPI
remains more efficient than Java with RMI. But the ratio
of 3.3 (average) of performance is maintained despite the
growth of data (see the bold curve). It is interesting to notice
that 3.3 is also the ratio of performance between Java and
C for the sequential versions. Our approach thus allows an
efficient distribution and is scalable regarding data. For 29M
of doubles, speedup of the C/MPI version is 15.41, speedup
of the Java/OO-SPMD is 15.23.

2) Deployment scalability: Figure 7 presents the Jacobi ap-
plication running on up to 130 machines. This experimentation
was done using a Peer-to-Peer deployment scheme provided by
ProActive within an Intranet configuration. The machines used
are desktop computers, simultaneously used by their users.
They are heterogeneous (slowest is a Pentium III @ 993 MHz
512MB, fastest is a bi-Pentium IV @ 3,2 GHz 2GB), they are
interconnected with 100 Mb/s network, they are running under
Linux (with different kernel versions). Deployed applications
run with a lower priority (nice 19) in order to not disturb
regular users. We used the Sun Java Virtual Machine 1.4.2.
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Fig. 6. Benchmark: C/MPI and Java/OO-SPMD versions
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Fig. 7. OO-SPMD scalability in a peer-to-peer experiment

For all measurements, each node is responsible for the
same amount of data (2000x2000 doubles). The overall size
of the problem grows with the number of nodes involved in
the computation. The line plots the average duration, in mil-
liseconds, of one Jacobi iteration depending of the number of
nodes involved. As previously, the average time was computed
after 100 iterations. Compared to the previous benchmarks,
for the same amount of data per node (see arrow in Figure
6), execution is 7 times slower. We blame the lower priority
of execution and the older JVM for this loss of performance.
Besides, the performance remains regular, regardless of the
number of used nodes. From this, we conclude that the
application is scalable.

VI. CONCLUSION

We have introduced a parallel programming model, which
we name Object-Oriented SPMD as an alternative to the
traditional Message-Passing SPMD style. Overall, it allows
more flexibility, and a higher level of abstraction. First, it
enforces members taking part in the computation just the
required involvement in collective operations. E.g. in MPI, a
call to MPI broadcast must be run by all members, even
if for all except the sender, this call aims only at receiving
the message. On the contrary, using our solution, a method
invocation towards a single active object to trigger a point-to-
point interaction, or towards a SPMD group of active objects to
trigger a collective interaction between all the members only
differ by the target object reference. This way, we promote
asychronous remote method invocation and the active object

pattern as the only required communication and structuration
mechanism. Secondly, our approach to SPMD programming
has potential for evolution. Instead of defining the parallel task
as a single ’big’ loop as in traditional SPMD programming,
OO-SPMD enables to receive and treat data in a more flexible
order (discarding the need to program sometimes intricate
case statements depending of received message’s tag).

The resulting OO-SPMD API already forms part of the
ProActive open-source library, freely distributed through the
Object Web consortium for open-source middleware. Our am-
bition is to have this approach used on real size applications.
We already successfully applied the typed group communi-
cation mechanism to solve simulation in electromagnetism
[14], [16]. Our current work is to apply the whole OO-
SPMD approach to it. Next, we plan to target other application
domains, such as biogenetics (applying BLAST in parallel),
for which we already have developed applications, but not yet
using OO-SPMD.
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